Journal of Organometallic Chemistry, 187 (1980) C37-C40
© Elsevier Sequoia S.A.,'Lausanne - Printed in The Netherlands

Preliminary communication

A NEW COBALT CARBONYL-CARBON DISULPHIDE CLUSTER CONTAINING A CO ${ }_{3}$ C AND A $\mathrm{Co}_{3} S$ PYRAMID SYMMETRICALLY LINKED BY A CS \mathbf{S}_{2}-BRIWGE: sym- $\mathrm{SCO}_{6}(\mathrm{CO})_{16} \mathrm{C}\left(\mathrm{CS}_{2}\right)$

PIER LUIGI STANGHELLINI, GIULIANA GERVASIO, ROSANNA ROSSETTI, Institute of Inorganic Chemistry, University of Turin, I-10125 Turin (Italy) and GYÖRGY BOR
Department of Industrial and Engineering Chemistry, ETH Zurich, CH-8092 Zurich (Switzerland)
(Received December 17th, 1979)

Summary

sym-(CO) ${ }_{9} \mathrm{Co}_{3} \mathrm{C}\left(\mathrm{CS}_{2}\right) \mathrm{Co}_{3}(\mathrm{CO})_{7} \mathrm{~S}$ has been isolated from the mixture formed in the reaction of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ with CS_{2}. This is the fifth member of the $\mathrm{C}_{\boldsymbol{m}} \mathrm{S}_{n} \mathrm{Co}_{p}(\mathrm{CO})_{q}$ family identified by X-ray diffraction studies. The molecular structure of the title compound is discussed and briefly compared with that of the asymmetric isomer and related compounds.

Dicobalt octacarbonyl reacts with carbon disulphide at room temperature [1-3]. Besides suiphur derivatives, e.g. $\mathrm{SCo}_{3}(\mathrm{CO})_{9}$, and sulphur-free carbon derivatives, as $\left[(\mathrm{CO})_{9} \mathrm{Co}_{3} \mathrm{Cl}_{2}\right.$, compounds belonging to the family of $\mathrm{C}_{\boldsymbol{m}} \mathrm{S}_{n} \mathrm{Co}_{p}(\mathrm{CO})_{q}$ clusters are among the $\mathbf{C O}$-containing products of this complex reaction. The following members of this family have been characterized so far by X-ray diffraction: $\mathrm{SCo}_{6}(\mathrm{CO})_{16} \mathrm{C}\left(\mathrm{CS}_{2}\right)$ ("Ta") $[4], \mathrm{SCo}_{6}\left(\mathrm{CO}_{15}\left(\mathrm{CS}_{2}\right)\right.$ ("Ib") $[5,6], \mathrm{S}_{2} \mathrm{Co}_{6}(\mathrm{CO})_{12} \mathrm{C}$ ("TII') [3] and $\mathrm{Co}_{6}(\mathrm{CO})_{18} \mathrm{C}_{2} \mathrm{~S}_{2}$ ("TV'") * [3].

We now report the preparation and structural characterization of a new compound "V" not observed previously among the products. Compound V was isolated by TLC from the reaction mixture obtained from $\mathrm{Co}_{2}\left(\mathrm{CO}_{8} / \mathrm{CS}_{2}\right.$ in molar ratios between 1/2 and 1/50 in n-hexane at room temperature under nitrogen for $10-72$ hours by TLC. It was eluted after $\left[\mathrm{Co}_{3}(\mathrm{CO})_{7} \mathrm{~S}_{2}\right]_{2} \mathrm{~S}_{2}$ (III) and $\mathrm{CO}_{4}(\mathrm{CO})_{12}$, but before Ib , and often overlapped with $\left\{(\mathrm{CO})_{9} \mathrm{Co}_{3} \mathrm{C}\right\}_{2} \mathrm{CO}$. It was obtained in ca. 15% yield (based on the soluble carbonyl complexes), as dark brown crystals, stable in air, only slightly soluble in hydrocarbons but soluble in CCl_{4} and

[^0]chloroform. The IR spectrum in the $\mathbf{C - O}$ stretching region shows the following absorptions (in hexane): $2107 \mathrm{~m}, 2078 \mathrm{~s}, 2065.5 \mathrm{~s}, 2055.5 \mathrm{~m}, 2050 \mathrm{w}, 2046.5 \mathrm{~m}$, 2034 m , and $2015 \mathrm{vw} \mathrm{cm}^{-1}$. In the medium-IR region (KBr pellet) three bands are found, at 1166.5, 991, and $742 \mathrm{~cm}^{-1}$, whereas between 700 and $200 \mathrm{~cm}^{-1}$ bands were observed (in KBr pellets) at 631, 613, 524, 512, 495, 479, 467, 456, 440, $429,408,390,379,357,347,313$, and $210 \mathrm{~cm}^{-1}$.

Crystals suitable for X-ray analysis were obtained by siow cooling of a dilute n -heptane solution at $-20^{\circ} \mathrm{C}$. They belong to the triclinic $P \overline{1}$ space group, with a 12.822(4), b 13.399(4), c 8.851(4) A, α 100.07(4), β 85.72(3). and $\gamma 106.20(4)^{\circ}$; $Z=2$. The cobalt atoms were located on a Patterson tridimensional map, and the carbon, oxygen and sulphur atoms by subsequent Fourier-difference syntheses. The atoms were satisfactorily refined by least-squares method in the $P \overline{1}$ space group to the final value of $R=0.090$ for 2839 reflections.

The structure of compound V can be regarded as formed by the two distorted tetrahedral cluster units $\mathrm{Co}_{3} \mathrm{C}$ and $\mathrm{Co}_{3} \mathrm{~S}$, linked by a symmetric CS_{2} bridge which is C-bonded to the apical carbon atom of the first cluster and S-bonded to two cobalt atoms of the second (Fig. 1). It is the isomer of complex Ia [4], the main structural difference being the mode of bondong of the $\mathbf{C S}_{2}$-bridge: in complex Ia this is S -bonded to the apical C -atom of the $\mathrm{CO}_{3} \mathrm{C}$ unit, and is bonded to two cobalt atoms of the $\mathrm{Co}_{3} \mathrm{~S}$ cluster by the C and the second S atom of the $\mathrm{S}-\mathrm{C}-\mathrm{S}$ bridge. We refer to Ia as the asymmetric isomer of $\mathrm{Co}_{6}(\mathrm{CO})_{16} \mathrm{C}_{2} \mathrm{~S}_{3}$.

In complex V the CS_{2}-bridge and the $\mathbf{C o}(4)$ and $\mathbf{C o (5)}$ atoms form a fivemembered ring (Fig. 2) which is strictly planar. This plane is inclined with respect to the Co_{3} planes of $\mathrm{Co}_{3} \mathrm{~S}$ and $\mathrm{Co}_{3} \mathrm{C}$ by 161 and 82°, respectively, and thus

Fig. 1. Perspective view of the molecular structure of sym-(CO), $\mathrm{Co}_{3} \mathrm{C}\left(\mathrm{CS}_{2}\right) \mathrm{Co}_{3}(\mathrm{CO})_{7} \mathrm{~S}$. The more relevant bond lengths and angles with the estimated standard aeviations in parentheses are:

$C o(1)-C o(2)$	$2.471(3) A$	$C o(4)-C o(5)$	$2.479(3) A$
$C o(1)-C o(3)$	$2.464(3)$	$C o(4)-C o(6)$	$2.524(3)$
$C o(2)-C o(3)$	$2.478(3)$	$C o(5)-C o(6)$	$2.532(1)$
$C o-C(17)(4 v)$	$1.89(2)$	$C(18)-S(1)$	$1.71(2)$
$C o-S(3)(a v)$.	$2.154(5)$	$C(18)-S(2) \quad 1.67(2)$	
$C o(4)-S(1)$	$2.233(5)$	$C(17)-C(18)-S(1)$	$116(1)^{\circ}$
$C o(5)-S(2)$	$2.242(5)$	$C(17)-C(18)-S(2)$	$118(1)^{\circ}$
$C(17)-C(18)$	$1.49(2)$	$S(1)-C(18)-S(2)$	$126(1)^{\circ}$

Fig. 2 Top-view of the structure.
it occupies two equatorial positions of the $\mathrm{Co}_{3} \mathrm{~S}$ cluster. The (non-bonded) $\mathrm{S} \cdot \mathrm{C}$ distance of $2.69 \AA$ is very favourable in substituting two vicinal equatorial CO groups of $\mathrm{SCO}_{3}(\mathrm{CO})_{9}$: the resulting $\mathrm{Co}(4)-\mathrm{Co}(5)-\mathrm{S}$ angles $\left(95^{\circ}\right.$, av.) are very similar to those found for the $\mathrm{Co}-\mathrm{Co}-\mathrm{C}$ angles in $\mathrm{SCo}_{3}(\mathrm{CO})_{9}$, viz. 96.5° (av.) [7]. It should be emphasized that the removal of the "excess" electron from the paramagnetic $\mathrm{SCo}_{3}(\mathrm{CO})_{9}$ by the remainder of the molecule results in shortening

Fig. 3. Oblique view from the $\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{Co}(3)$ face.
of the $\mathrm{Co}-\mathrm{Co}$ distances of the $\mathrm{Co}_{3} \mathrm{~S}$ unit, as found in $\mathrm{SCO}_{2} \mathrm{Fe}(\mathrm{CO})_{9}$ [8] and in clusters containing the $\mathrm{SCo}_{3}(\mathrm{CO})_{x}(x=6$ or 7) fragment $[4,9,10]$.

Moreover, the $\mathrm{Co}_{3} \mathrm{~S}$ cluster does not possess a threefold symmetry, as the bridged Co-Co bond is significantly shorter (2.479(3) \AA) than the other metalmetal distances (2.524(3) and 2.532(4) \AA). A similar shortening of the bridged Co - Co edge was previously found in Ia [4] and $\left\{\mathrm{Co}_{3}(\mathrm{CO})_{7} \mathrm{~S}_{6}\right\}_{2} \mathrm{~S}_{2}$ [9]. The similarity between the $\mathrm{CO}_{3} \mathrm{~S}$ clusters in these three complexes is not confined only to the $\mathrm{Co}-\mathrm{Co}$ distances but also includes the other distances and angles.

The apical $C(17)$ atom lies roughly on the plane defined by the five-membered ring, so that the planarity of the $C(17)-\mathrm{CS}_{2}$ bridge suggests an $s p^{2}$ hybridisation of $C(18)$. This is supported by the values of the $C-C-S$ and $S-C-S$ angles, which are not far from 120°. The length of the $C-S$ bonds indicate a partial double bond character [11], and the value of the $C(17)-C(18)$ bond (1.49(2) \AA) agrees with the values reported by Brice and Penfold [12] for $\sigma \mathrm{C}_{a p}-\mathbf{C}\left(s p^{2}\right)$ bond in the $\mathrm{Co}_{3} \mathrm{C}-\mathrm{C}$ systems. The CS_{2} group bonded to the former unit can be considered as a dithiocarboxylato substituent, and its bonding characteristics are similar to those of an allylic group.

Within the $(\mathrm{CO})_{9} \mathrm{Co}_{3} \mathrm{C}$ fragment all bonds are consistent with the values previously reported [13], and at this stage of refinement, there is no evidence of significant distortion of the $\mathrm{Co}_{3} \mathrm{C}-\mathrm{C}$ framework from the local $\boldsymbol{C}_{3 v}$ symmetry. The $\mathbf{C o}(1)-\mathrm{Co}(2)$ edge is parallel to the plane of the five-membered ring, as better shown in Fig. 3, and so the molecule possesses an idealised C_{s} symmetry.

References

[^1]
[^0]: *The labellings $\mathrm{La}, \mathrm{Ib}, \mathrm{II}$, and IV correspond to those used in our previous papers $[2,31$. Compounds La and Ib were initially formulated as two isomers of the composition $\mathrm{Co}_{4}(\mathrm{CO})_{12} \mathrm{CS}_{2}[1,2]$. These formulae proved to be in error and should be replaced by those given above.

[^1]: 1 L. Markó, G. Bor and E. Klumpp, Angew. Chem., 75 (1963) 248.
 2 E. Klumpp, G. Bor and L. Markó, J. Organometal. Chem., 11 (1968) 207.
 3 G. Bor, G. Gervasio. R. Rossetti and P.L. Stanghellini, J. Chem. Soc. Chem. Commun., (1978) 841.
 4 C.H. Wei, personal communication.
 5 J.F. Blount and L.F. Dahl, unpublished results, 1968.
 6 G. Gervasio, P.L. Stanghellini and G. Bor, work in progress.
 7 C.H. Wei and L.F. Dahi, Inorg. Chem., 6 (1967) 1229.
 8 D.L. Stevenson, C.H. Wei and L.F: Dahl. J. Amer. Chem. Soc.. 93 (1971) 6027.
 9 D.L. Stevenson, V.R. Magnusson and L.F. Dahl. J. Amer. Chem. Soc., 89 (1967) 3727.
 10 C.H. Wei and L.F. Dahl, J. Amer. Chem. Soc., 90 (1968) 3977.
 11 S.C. Abrahams, Quart. Rev., 10 (1956) 407.
 12 M.D. Brice and B.R. Penfold, Inorg. Chem., 11 (1972) 1381.
 13 B.R. Penfold and B.H. Robinson, Accounts Chem. Res., 6 (1973) 73, and ref. therein.

